f08 — Least-squares and Eigenvalue Problems (LAPACK) f08bsc

NAG C Library Function Document

nag_ zgeqpf (f08bsc)

1 Purpose

nag_zgeqpf (f08bsc) computes the QR factorization, with column pivoting, of a complex m by n matrix.

2 Specification

void nag_zgeqpf (Nag_OrderType order, Integer m, Integer n, Complex al[],
Integer pda, Integer jpvt[], Complex tau[], NagError *fail)

3 Description

nag_zgeqpf (f08bsc) forms the QR factorization with column pivoting of an arbitrary rectangular complex
m by n matrix.

If m > n, the factorization is given by:

ir=of3)

where R is an n by n upper triangular matrix (with real diagonal elements), () is an m by m unitary
matrix and P is an n by n permutation matrix. It is sometimes more convenient to write the factorization
as

ar=(@)

which reduces to
AP=QR,
where), consists of the first n columns of @, and @), the remaining m — n columns.
If m <n, R is trapezoidal, and the factorization can be written
AP =Q(R, Ry),
where R, is upper triangular and R, is rectangular.

The matrix @ is not formed explicitly but is represented as a product of min(m,n) elementary reflectors
(see the 08 Chapter Introduction for details). Functions are provided to work with () in this representation
(see Section).

Note also that for any k < n, the information returned in the first £ columns of the array a represents a QR
factorization of the first k£ columns of the permuted matrix AP.

The function allows specified columns of A to be moved to the leading columns of AP at the start of the
factorization and fixed there. The remaining columns are free to be interchanged so that at the ith stage
the pivot column is chosen to be the column which maximizes the 2-norm of elements ¢ to m over
columns ¢ to n.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

[NP3645/7] f08bsc.1

f08bsc NAG C Library Manual

S Parameters
1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: m — Integer Input
On entry: m, the number of rows of the matrix A.

Constraint: m > 0.

3: n — Integer Input
On entry: n, the number of columns of the matrix A.

Constraint: n > 0.

4: a[dim| — Complex Input/Output

Note: the dimension, dim, of the array a must be at least max(1l,pda x n) when
order = Nag_ColMajor and at least max(1, pda x m) when order = Nag RowMajor.

If order = Nag_ColMajor, the (7, j)th element of the matrix A is stored in a[(j — 1) x pda + i — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix A is stored in a[(i — 1) x pda + j — 1].

On entry: the m by n matrix A.

On exit: if m > n, the elements below the diagonal are overwritten by details of the unitary matrix
@ and the upper triangle is overwritten by the corresponding elements of the n by n upper
triangular matrix R.

If m < n, the strictly lower triangular part is overwritten by details of the unitary matrix () and the
remaining elements are overwritten by the corresponding elements of the m by n upper trapezoidal
matrix R.

The diagonal elements of R are real.

5: pda — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.
Constraints:

if order = Nag_ColMajor, pda > max(1, m);
if order = Nag_RowMajor, pda > max(1,n).

6: jpvt(dim] — Integer Input/Output
Note: the dimension, dim, of the array jpvt must be at least max(1,n).

On entry: if jpvt[i] # 0, then the ith column of A is moved to the beginning of AP before the
decomposition is computed and is fixed in place during the computation. Otherwise, the ith column
of A is a free column (i.e., one which may be interchanged during the computation with any other
free column).

On exit: details of the permutation matrix P. More precisely, if jpvt[i — 1] = k, then the kth
column of A is moved to become the ith column of AP; in other words, the columns of AP are the
columns of A in the order jpvt[0], jpvt[l],...,jpvtn — 1].

f08bsc.2 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08bsc

7: tau[dim| — Complex Output
Note: the dimension, dim, of the array tau must be at least max(1, min(m,n)).

On exit: further details of the unitary matrix Q).

8: fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, m = (value).
Constraint: m > 0.

On entry, n = (value).
Constraint: n > 0.

On entry, pda = (value).
Constraint: pda > 0.

NE_INT 2

On entry, pda = (value), m = (value).
Constraint: pda > max(1, m).

On entry, pda = (value), n = (value).
Constraint: pda > max(1,n).
NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed factorization is the exact factorization of a nearby matrix A + £, where
1Ell, = Ol All,,

and ¢ is the machine precision.

8 Further Comments

The total number of real floating-point operations is approximately §712(3m—n) if m>n or

3
§m*(3n —m) if m < n.

To form the unitary matrix) this function may be followed by a call to nag_zungqr (f08atc):
nag_zungqr (order,m,m,MIN(m,n), &a,pda,tau,&fail)

but note that the second dimension of the array a must be at least m, which may be larger than was
required by nag zgeqpf (fO8bsc).

[NP3645/7] f08bsc.3

fO8bsc NAG C Library Manual

When m > n, it is often only the first n columns of () that are required, and they may be formed by the
call:

nag_zungqr (order,m,n,n,&a,pda,tau,&fail)

To apply @ to an arbitrary complex rectangular matrix C, this function may be followed by a call to
nag_zunmgqr (f08auc). For example,

nag_zunmgr (order,Nag_LeftSide,Nag_ConjTrans,m,p,MIN(m,n), &a,pda,
tau, &c,pdc,&fail)

forms C' = QHC', where C' is m by p.
To compute a QR factorization without column pivoting, use nag_zgeqrf (f08asc).

The real analogue of this function is nag_dgeqpf (fO8bec).

9 Example
To solve the linear least-squares problem

minimize||Az; — b|,, i=1,2
where b, and b, are the columns of the matrix B,

047 —0.34¢ —0.40 + 0.54¢ 0.60 +0.01% 0.80 —1.027
—-0.32-0.23; —-0.0540.20¢ —0.26 —0.44¢ —0.43+0.17¢

A= 0.35-0.60¢ —0.52 —0.34¢ 0.87 —-0.11¢ —0.34 —0.09¢
0.89+4+0.712 —0.45—-0.45¢ —0.02 —0.57¢ 1.14 — 0.78¢

—0.19 4 0.06¢ 0.11 — 0.85¢ 1.44 +0.80¢ 0.07 + 1.14¢k

and

—0.85 —1.63: 2.49 +4.01%

—2.16 +3.52: —0.14 4-7.98¢

B = 4.57 -5.71¢ 8.36 — 0.287
6.38 —7.40¢ —3.5541.29¢
8414939 —6.7245.03:k

Here A is approximately rank-deficient, and hence it is preferable to use nag_zgeqpf (f08bsc) rather than
nag_zgeqrf (f08asc).

9.1 Program Text

/* nag_zgeqgpf (f08bsc) Example Program.
*

* Copyright 2001 Numerical Algorithms Group.
*

* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <naga02.h>
#include <nagf07.h>
#include <nagf08.h>
#include <nagfl6.h>
#include <nagx04.h>

int main(void)

{
/* Scalars *x/
double tol;
Integer i, j, jpvt_len, k, m, n, nrhs;
Integer pda, pdb, pdx, tau_len;
Integer exit_status=0;
NagError fail;

f08bsc.4 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08bsc

Nag_OrderType order;

/* Arrays */

Complex *a=0, *b=0, *tau=0, *x=0;
Integer *jpvt=0;

#ifdef NAG_COLUMN_MAJOR

#define A(I,J) al(J-1)*pda

#define B(I,J) b[(J-1)=*pdb

#define X(I,J) x[(J-1)*pdx + I - 1]
order = Nag_ColMajor;

#else

+ +
HH
1
e

#define A(I,J) al(I-1)*pda + JT - 1]
#define B(I,J) b[(I-1)#*pdb + J - 1]
#define X(I,J) x[(I-1)*pdx + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf ("£f08bsc Example Program Results\n\n")

/* Skip heading in data file =*/

Vscanf ("s*x["\n] ");

Vscanf ("%$1d%1d%1d%s*["\n] ", &m, &n, &nrhs);
#ifdef NAG_COLUMN_MAJOR

pda = m;

pdb = m;

pdx = m;
#else

pda = n;

pdb = nrhs;

pdx = nrhs;
#endif

tau_len = MIN(m,n);
jpvt_len = n;

/* Allocate memory */

if (!(a = NAG_ALLOC(m * n, Complex)) ||
(b = NAG_ALLOC(m * nrhs, Complex)) |
(tau = NAG_ALLOC(tau_len, Complex))
(x = NAG_ALLOC(m * nrhs, Complex)) |
! (jpvt = NAG_ALLOC(jpvt_len, Integer)

|
[
|
))

{
Vprintf ("Allocation failure\n")
exit_status = -1;
goto END;
}
/* Read A and B from data file =*/
for (i = 1; i <= m; ++1)
{
for (j = 1; j <= n; ++3j)
Vscanf (" (%1f , %1f)", &A(i,j).re, &A(i,J).im);
}
Vscanf ("$*[*\n] ");
for (i = 1; i <= m; ++1)
{
for (j = 1; j <= nrhs; ++3j)
Vscanf (" (%1f , %1f)", &B(i,j).re, &B(i,Jj).im);
}
Vscanf ([*\n] ");

/* Initialize JPVT to be zero so that all columns are free */
fledbc(n, 0, jpvt, 1, &fail);

/* Compute the QR factorization of A */

f08bsc(order, m, n, a, pda, jpvt, tau, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08bsc.\n%s\n", fail.message);
exit_status = 1;
goto END;

[NP3645/7] f08bsc.5

fO8bsc NAG C Library Manual

}

/* Choose TOL to reflect the relative accuracy of the input data =*/
tol = 0.01;

/* Determine which columns of R to use #*/
for (k = 1; k <= n; ++k)

{
if (a02dbc(A(k, k)) <= tol * a02dbc(A(1l, 1)))
break;
}
__k,.

/* Compute C = (Q**H)*B, storing the result in B */

fO8auc(order, Nag_LeftSide, Nag _ConjTrans, m, nrhs, n, a, pda,
tau, b, pdb, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO8auc.\n%s\n", fail.message);
exit_status = 1;
goto END;
3
/* Compute least-squares solution by backsubstitution in R*B = C */

fO7tsc(order, Nag_Upper, Nag_NoTrans, Nag_NonUnitDiag, k, nrhs,
a, pda, b, pdb, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO07tsc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}
for (i = k + 1; i <= n; ++i)
{
for (j = 1; j <= nrhs; ++3j)
{
B(i,j).re 0.0;
B(i,j).im = 0.0;
}
3
/* Unscramble the least-squares solution stored in B #*/
for (i = 1; 1 <= n; ++1)
{
for (j = 1; j <= nrhs; ++3j)
{

X(jpvtli - 1], j).re = B(i, j).re;
X(jpvt[i - 11, 3).im = B(i, 3).im;
}
)

/* Print least-squares solution *x/

x04dbc (order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, x, pdx,
Nag_BracketForm, "%7.4f", "Least-squares solution",
Nag_IntegerLabels, 0O, Nag_IntegerLabels, 0, 80, 0, 0, &fail);

if (fail.code != NE_NOERROR)

{
Vprintf ("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}
END:
if (a) NAG_FREE (a);
if (b) NAG_FREE (b);
if (tau) NAG_FREE (tau);
if (x) NAG_FREE(x);

if (jpvt) NAG_FREE (jpvt);
return exit_status;

f08bsc.6 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK)

9.2 Program Data

f08bsc Example Program Data

5 4 2

.47,-0.34
.32,-0.23
.35,-0.60
.89, 0.71
.19, 0.06
.85,-1.63
.16, 3.52
.57,-5.71
.38,-7.40
.41, 9.39

|
VOB NOOOOOOo

O WOWONOOOOOo

9.3 Program Results

.40,
.05,
.52,-0.
.45,-0.
.11,-0.
.49,
.14,
.36,-0.
.55,
.72,

0.
0.

4.
7.

1.
5.

54) (0.60, 0.01)
20) (-0.26,-0.44)
34) (0.87,-0.11)
45) (-0.02,-0.57)
85) (1.44, 0.80)
01)
98)
28)
29)
03)

f08bsc Example Program Results

Least-squares solution

1 (0.0000,
2 (2.6925,
3 (2.7602,
4 (2.7383,

O 0000
.0446
2 5455

)
)
)
0.5123)

(
(-
(
(-

2
0000, 0.0000)
0563,-2.9759)
0588, 1.4635)

)

0.
-2.
1.
1.4150, 0.2982

~ e~~~ —~

OpRr OOOo

f08bsc

:Values of M, N and NRHS

.80,-1.
.43,
.34,-0.
.14,-0.
.07,

0.

1.

02)

:End of matrix A

:End of matrix B

[NP3645/7]

f08bsc.7 (last)

	f08bsc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	m
	n
	a
	pda
	jpvt
	tau
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

